Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0357520240470010029
Journal of Radiological Science and Technology
2024 Volume.47 No. 1 p.29 ~ p.37
Evaluation of U-Net Based Learning Models according to Equalization Algorithm in Thyroid Ultrasound Imaging
Jeon Moo-Jin

Oh Joo-Young
Park Hoon-Hee
Lee Joo-Young
Abstract
This study aims to evaluate the performance of the U-Net based learning model that may vary depending on the histogram equalization algorithm. The subject of the experiment were 17 radiology students of this college, and 1,727 data sets in which the region of interest was set in the thyroid after acquiring ultrasound image data were used. The training set consisted of 1,383 images, the validation set consisted of 172 and the test data set consisted of 172. The equalization algorithm was divided into Histogram Equalization(HE) and Contrast Limited Adaptive Histogram Equalization(CLAHE), and according to the clip limit, it was divided into CLAHE8-1, CLAHE8-2. CLAHE8-3. Deep Learning was learned through size control, histogram equalization, Z-score normalization, and data augmentation. As a result of the experiment, the Attention U-Net showed the highest performance from CLAHE8-2 to 0.8355, and the U-Net and BSU-Net showed the highest performance from CLAHE8-3 to 0.8303 and 0.8277. In the case of mIoU, the Attention U-Net was 0.7175 in CLAHE8-2, the U-Net was 0.7098 and the BSU-Net was 0.7060 in CLAHE8-3. This study attempted to confirm the effects of U-Net, Attention U-Net, and BSU-Net models when histogram equalization is performed on ultrasound images. The in- crease in Clip Limit can be expected to increase the ROI match with the prediction mask by clarifying the boundaries, which affects the improvement of the contrast of the thyroid area in deep learning model learning, and consequently affects the performance improvement.
KEYWORD
U-Net, HE, CLAHE, Ultrasound, Medical Image
FullTexts / Linksout information
Listed journal information